Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Mol Reprod Dev ; 90(1): 53-58, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173295

ABSTRACT

The goal for the present study was to investigate whether previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may compromise embryo morphokinetics and implantation. For that, a historical cohort study was performed in a private university-affiliated in vitro fertilization center. The study included 1628 embryos from 88 patients undergoing intracytoplasmic sperm injection (ICSI) cycles. Patients were age-matched in a 1:3 ratio to either a coronavirus disease (COVID) group, including patients with a positive SARS-CoV-2 immunoglobulin test (n = 22 patients, 386 embryos), or a control group, including patients with a negative SARS-CoV-2 immunoglobulin test (n = 66, 1242 embryos). The effect of previous infection with SARS-CoV-2 on morphokinetic events and ICSI outcomes was evaluated. Embryos derived from patients in the COVID group presented longer time to pronuclei appearance and fading, time to form two, three, four and five cells, and time to blastulation. The durations of the third cell cycle and to time to complete synchronous divisions were also significantly increased in the COVID group compared with the control group, whereas known implantation diagnosis score Day 5 ranked significantly lower in the COVID group. No differences were observed between the COVID and control groups on clinical outcomes. In conclusion, patients planning parenthood, who have recovered from COVID-19 infection, must be aware of a possible effect of the infection on embryo development potential.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Male , Cohort Studies , Time-Lapse Imaging/methods , Retrospective Studies , Semen , Embryonic Development , Embryo Implantation , Fertilization in Vitro/methods , Immunoglobulins , Embryo Culture Techniques , Blastocyst
2.
Biol Res ; 55(1): 26, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1993395

ABSTRACT

BACKGROUND: Unsubstantiated concerns have been raised on the potential correlation between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and infertility, leading to vaccine hesitancy in reproductive-aged population. Herein, we aim to evaluate the impact of inactivated SARS-CoV-2 vaccination on embryo ploidy, which is a critical indicator for embryo quality and pregnancy chance. METHODS: This was a retrospective cohort study of 133 patients who underwent preimplantation genetic testing for aneuploidy (PGT-A) cycles with next-generation sequencing technology from June 1st 2021 to March 17th 2022 at a tertiary-care medical center in China. Women fully vaccinated with two doses of Sinopharm or Sinovac inactivated vaccines (n = 66) were compared with unvaccinated women (n = 67). The primary outcome was the euploidy rate per cycle. Multivariate linear and logistic regression analyses were performed to adjust for potential confounders. RESULTS: The euploidy rate was similar between vaccinated and unvaccinated groups (23.2 ± 24.6% vs. 22.6 ± 25.9%, P = 0.768), with an adjusted ß of 0.01 (95% confidence interval [CI]: -0.08-0.10). After frozen-thawed single euploid blastocyst transfer, the two groups were also comparable in clinical pregnancy rate (75.0% vs. 60.0%, P = 0.289), with an adjusted odds ratio of 6.21 (95% CI: 0.76-50.88). No significant associations were observed between vaccination and cycle characteristics or other laboratory and pregnancy outcomes. CONCLUSIONS: Inactivated SARS-CoV-2 vaccination had no detrimental impact on embryo ploidy during in vitro fertilization treatment. Our finding provides further reassurance for vaccinated women who are planning to conceive. Future prospective cohort studies with larger datasets and longer follow-up are needed to confirm the conclusion.


Subject(s)
COVID-19 , Preimplantation Diagnosis , Adult , Aneuploidy , Blastocyst , COVID-19/prevention & control , COVID-19 Vaccines , Female , Fertilization in Vitro , Genetic Testing , Humans , Ploidies , Pregnancy , Pregnancy Rate , Prospective Studies , Retrospective Studies , SARS-CoV-2 , Vaccination
3.
J Reprod Immunol ; 151: 103635, 2022 06.
Article in English | MEDLINE | ID: covidwho-1885957

ABSTRACT

The reproductive system can be infected by a variety of double-stranded RNA viruses, which disrupt ovary function and pregnancy. However, whether viral infection directly affects early embryonic development remains unknown. Here we show that Poly(I:C), which mimics a double-stranded RNA virus, significantly impaired mouse early embryonic development in vitro, and up-regulated TLR3 and IFNα at the two cells embryo stage. Further studies indicated that Poly(I:C)-treatment caused DNA damage and abnormal spindle morphology at the first cleavage. Moreover, CDX2 and SOX2 expression was decreased while blastocyst cell apoptosis was increased. Altogether, Poly(I:C) decreased the rate of successful in vitro fertilization via DNA damage and abnormal spindle morphology at the first cleavage and inhibited early embryonic development by inducing immune response and promoting blastocyst cell apoptosis. This study provides an implication for exploring the causes of reproductive disorders in mammals and humans caused by infection of double-stranded RNA virus.


Subject(s)
Embryonic Development , RNA, Double-Stranded , Animals , Blastocyst , DNA Damage , Female , Fertilization in Vitro , Humans , Mammals/genetics , Mice , Pregnancy
4.
Reprod Toxicol ; 111: 135-147, 2022 08.
Article in English | MEDLINE | ID: covidwho-1851996

ABSTRACT

Remdesivir (RDV) is the first antiviral drug to be approved by the US Food and Drug Administration for the treatment of COVID-19. While the general safety of RDV has been studied, its reproductive risk, including embryotoxicity, is largely unknown. Here, to gain insights into its embryotoxic potential, we investigated the effects of RDV on mouse preimplantation embryos cultured in vitro at the concentrations comparable to the therapeutic plasma levels. Exposure to RDV (2-8 µM) did not affect the initiation of blastocyst formation, although the maintenance of the cavity failed at 8 µM due to increased cell death. While exposure to 2-4 µM permitted the cavity maintenance, expressions of developmental regulator genes associated with the inner cell mass (ICM) lineage were significantly diminished. Adverse effects of RDV depended on the duration and timing of exposure, as treatment between the 8-cell to early blastocyst stage most sensitively affected cavity expansion, gene expressions, and cell proliferation, particularly of the ICM than the trophectoderm lineage. GS-441524, a major metabolite of RDV, did not impair blastocyst formation or cavity expansion, although it altered gene expressions in a manner differently from RDV. Additionally, RDV reduced the viability of human embryonic stem cells, which were used as a model for the human ICM lineage, more potently than GS-441524. These findings suggest that RDV is potentially embryotoxic to impair the pluripotent lineage, and will be useful for designing and interpreting further in vitro and in vivo studies on the reproductive toxicity of RDV.


Subject(s)
COVID-19 Drug Treatment , Pregnancy Complications, Infectious , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Blastocyst , Embryonic Development/genetics , Female , Mice , Pregnancy , Pregnancy Complications, Infectious/metabolism
5.
Reprod Biol Endocrinol ; 20(1): 46, 2022 Mar 08.
Article in English | MEDLINE | ID: covidwho-1736421

ABSTRACT

BACKGROUND: This study aimed to evaluate the influences of SARS-CoV-2 infection on semen parameters and investigate the impact of the infection on in vitro fertilization (IVF) outcomes. METHODS: This retrospective study enrolled couples undergoing IVF cycles between May 2020 and February 2021 at Tongji Hospital, Wuhan. Baseline characteristics were matched using propensity score matching. Participants were categorized into an unexposed group (SARS-COV-2 negative) and exposed group (SARS-COV-2 positive) based on a history of SARS-CoV-2 infection, and the populations were 148 and 50 after matching, respectively. IVF data were compared between the matched cohorts. Moreover, semen parameters were compared before and after infection among the infected males. The main measures were semen parameters and IVF outcomes, including laboratory and clinical outcomes. RESULTS: Generally, the concentration and motility of sperm did not significantly differ before and after infection. Infected males seemed to have fewer sperm with normal morphology, while all values were above the limits. Notably, the blastocyst formation rate and available blastocyst rate in the exposed group were lower than those in the control group, despite similar mature oocytes rates, normal fertilization rates, cleavage rates, and high-quality embryo rates. Moreover, no significant differences were exhibited between the matched cohorts regarding the implantation rate, biochemical pregnancy rate, clinical pregnancy rate, or early miscarriage rate. CONCLUSIONS: The results of this retrospective cohort study suggested that the semen quality and the chance of pregnancy in terms of IVF outcomes were comparable between the males with a history of SARS-CoV-2 infection and controls, although a decreased blastocyst formation rate and available blastocyst rate was observed in the exposed group, which needs to be reinforced by a multicenter long-term investigation with a larger sample size.


Subject(s)
COVID-19/physiopathology , Fertilization in Vitro/methods , Semen/physiology , Sperm Injections, Intracytoplasmic/methods , Sperm Motility/physiology , Adult , Blastocyst/cytology , Blastocyst/physiology , COVID-19/virology , Embryo Implantation , Embryo Transfer , Female , Humans , Male , Pregnancy , Pregnancy Rate , Retrospective Studies , SARS-CoV-2/physiology , Semen/cytology , Sperm Count , Treatment Outcome
6.
J Assist Reprod Genet ; 38(11): 2915-2923, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1530351

ABSTRACT

OBJECTIVE: To determine whether euploidy rates and blastocyst development differ in a continuous culture medium under different CO2 concentrations. DESIGN AND METHOD: A single-center retrospective study was performed from July 2018 to October 2019 including 44 fresh cycles with at least four fresh mature oocytes (MII) without severe male factor infertility. Sibling MII were injected and cultured in Global®Total®LP under 6.0% (pHe = 7.374 ± 0.014) or 7.0% (pHe = 7.300 ± 0.013) CO2, 5.0% O2, and 89.0% or 88.0% N2. Analyzed variables were normally fertilized oocytes (2PN), cleavage rate, blastulation rate on day 5/2PN, usable blastocyst (blastocysts biopsied/2PN), and euploidy rates. Blastocyst's trophectoderm biopsy was performed on day 5, 6, or 7 for genetic testing and mitochondrial DNA (mtDNA) quantification by next-generation sequencing. RESULTS: Women's mean age was 33.0 ± 6.6 years old. From a total of 604 MII, no differences were found in normal fertilization and cleavage rates on day 3 between 6.0 and 7.0% CO2 (72.3% vs 67.1%, p = 0.169 and 96.6% vs 96.3%, p = 0.897, respectively). Blastulation rate on day 5/2PN was comparable between 6.0 and 7.0% CO2 (68.1% vs 64.2%, p = 0.409). Although usable blastocyst rate was not different (54.3% vs 55.3%, p = 0.922), total euploidy rates differed significantly (58.7% vs 42.8%, p = 0.016) between 6.0% and 7.0% CO2, respectively. The mean blastocyst mtDNA content was significantly lower in 6.0% CO2 (30.4 ± 9.1 vs 32.9 ± 10.3, p = 0.037). CONCLUSION: Blastocyst development is not affected when embryos are cultured in vitro at 6.0% or 7.0% CO2, while euploidy rates are significantly decreased at a higher CO2 concentration, therefore at a lower pHe.


Subject(s)
Blastocyst/cytology , Carbon Dioxide/pharmacology , Chromosome Aberrations/drug effects , Embryo Culture Techniques/methods , Fertilization in Vitro/methods , Oocytes/cytology , Adult , Blastocyst/drug effects , Embryo Implantation , Embryo Transfer , Female , Genetic Testing , Humans , Hydrogen-Ion Concentration , Male , Oocytes/drug effects , Pregnancy , Preimplantation Diagnosis/methods , Retrospective Studies , Siblings
7.
J Assist Reprod Genet ; 37(11): 2657-2660, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-1384515

ABSTRACT

PURPOSE: To visualize SARS-CoV-2 host receptors ACE2 and CD147 on human oocytes and blastocysts. METHODS: Immunohistochemistry and confocal microscopy on human primary oocytes and pre (5 days post fertilization (dpf5) and (dpf6))- and peri (dpf7)-implantation blastocysts donated to research. RESULTS: SARS-CoV-2 host receptors ACE2 and CD147 are present on the membrane of trophectoderm, epiblast and hypoblast cells in human blastocysts. CD147 is also present on the oolemma. CONCLUSION: Theoretically, the earliest stages of embryonic development may be vulnerable for SARS-CoV-2 infection.


Subject(s)
Basigin/metabolism , Blastocyst/metabolism , Oocytes/metabolism , Peptidyl-Dipeptidase A/metabolism , Angiotensin-Converting Enzyme 2 , Female , Humans , Immunohistochemistry
8.
Cells ; 10(7)2021 07 02.
Article in English | MEDLINE | ID: covidwho-1323125

ABSTRACT

The open carrier system (OC) is used for vitrification due to its high efficiency in preserving female fertility, but concerns remain that it bears possible risks of cross-contamination. Closed carrier systems (CC) could be an alternative to the OC to increase safety. However, the viability and developmental competence of vitrified/warmed (VW) oocytes using the CC were significantly lower than with OC. We aimed to improve the efficiency of the CC. Metaphase II oocytes were collected from mice after superovulation and subjected to in vitro fertilization after vitrification/warming. Increasing the cooling/warming rate and exposure time to cryoprotectants as key parameters for the CC effectively improved the survival rate and developmental competence of VW oocytes. When all the conditions that improved the outcomes were applied to the conventional CC, hereafter named the modified vitrification/warming procedure using CC (mVW-CC), the viability and developmental competence of VW oocytes were significantly improved as compared to those of VW oocytes in the CC. Furthermore, mVW-CC increased the spindle normality of VW oocytes, as well as the cell number of blastocysts developed from VW oocytes. Collectively, our mVW-CC optimized for mouse oocytes can be utilized for humans without concerns regarding possible cross-contamination during vitrification in the future.


Subject(s)
Blastocyst/cytology , Cryopreservation/methods , Fertilization in Vitro/methods , Oocytes/cytology , Vitrification , Animals , Biomarkers/metabolism , Blastocyst/metabolism , CDX2 Transcription Factor/genetics , CDX2 Transcription Factor/metabolism , Cadherins/genetics , Cadherins/metabolism , Cell Survival/drug effects , Cells, Cultured , Cryoprotective Agents/pharmacology , Dimethyl Sulfoxide/pharmacology , Ethylene Glycol/pharmacology , Female , Gene Expression , Male , Metaphase , Mice , Oocytes/drug effects , Oocytes/metabolism , Spermatozoa/physiology , Sucrose/pharmacology
9.
Syst Biol Reprod Med ; 67(4): 260-269, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1249263

ABSTRACT

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, is an unprecedented global situation, and all countries have adopted their own measurements to mitigate the spread of the virus in the first as well as in the subsequent waves of infection. All measures, especially in the first wave of the pandemic, were in combination with recommendations provided by professional and scientific organizations. Similar measures were applied to specific procedures, such as the management of infertility, including in vitro fertilization-embryo transfer (IVF-ET) treatments. Although there is no clear scientific evidence yet that the SARS-CoV-2 may exert negative effects on IVF outcome, especially at the early stages, several clinical reports indicate that the virus may impact male fertility through specific receptors presented at the somatic cells of the testis and used by the virus in order to gain entry to the respective cells. Nevertheless, it is not unreasonable to suspect that the virus may affect sperm function as well as oocyte performance directly through specific receptors or indirectly through other signaling pathways. Despite the good practice of IVF laboratory techniques, culture media may also be contaminated during equilibration when airborne virus's particles can contaminate culture media from an already infected embryology area or staff. Furthermore, although there is no clinical evidence, liquid nitrogen could be a route of infection for gametes and embryos when it has been contaminated during production or transportation. Therefore, cryopreservation of gametes and embryos must be virus-free. This communication aims to provide some aspects of the possible impact of the virus on gametes and embryos and how it may affect the cryopreservation procedures.Abbreviations: ACE2: angiotensin- converting enzyme 2; ART: assisted reproductive technology; ASRM: American Society for Reproductive Medicine; CDC: Centers for Disease Control and Prevention; COVID-19: coronavirus disease 2019; ESHRE: European Society of Human Reproduction and Embryology; ET: embryo transfer; FSH: follicle stimulating hormone; IFFS: International Federation of Fertility Societies; IVF: in vitro fertilization; LH: luteinizing hormone; LN: liquid nitrogen; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; T: testosterone; WHO: World Health Organization.


Subject(s)
Blastocyst/virology , COVID-19/virology , Cryopreservation , Infertility/therapy , Oocytes/virology , Reproductive Techniques, Assisted , SARS-CoV-2/pathogenicity , Spermatozoa/virology , COVID-19/diagnosis , COVID-19/transmission , Embryo Transfer , Female , Fertilization in Vitro , Humans , Infertility/diagnosis , Infertility/physiopathology , Male , Pregnancy , Reproductive Techniques, Assisted/adverse effects
10.
J Assist Reprod Genet ; 38(7): 1709-1720, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1206912

ABSTRACT

PURPOSE: To predict if developing human embryos are permissive to multiple coronaviruses. METHOD: We analyzed publicly available single-cell RNA-seq datasets of human embryos for the known canonical and non-canonical receptors and spike protein cleavage enzymes for multiple coronaviruses like SARS-CoV, SARS-CoV-2, MERS-CoV, hCoV-229E, and hCoV-NL63. We also analyzed the expression of host genes involved in viral replication, host proteins involved in viral endosomal sorting complexes required for transport (ESCRT), genes of host proteins that physically interact with proteins of SARS-CoV-2, and the host genes essential for coronavirus infectivity. RESULTS: Of the known receptors of SARS viruses, ACE2, BSG, GOLGA7, and ZDHHC5 were expressed in different proportions in the zygote, 4-cell, 8-cell, morula, and blastocysts including the trophectoderm. The MERS-CoV receptor, DPP4, and hCoV-229E receptor, ANPEP, were expressed mainly from the compact morula to the blastocyst stages. Transcripts of the MERS-CoV alternate receptor LGALS1 were detected in most cells at all stages of development. TMPRSS2 transcripts were detected in the epiblast, primitive endoderm, and trophectoderm, while transcripts of the endosomal proteases CTSL, CTSB, and FURIN were expressed in most cells at all stages of development. ACE2 and TMPRSS2 were co-expressed in a proportion of epiblast and trophectoderm cells. The embryonic cells expressed genes involved in ESCRT, viral replication, SARS-CoV-2 interactions, and coronavirus infectivity. The ACE2 and TMPRSS2 co-expressing cells were enriched in genes associated with lipid metabolism, lysosome, peroxisome, and oxidative phosphorylation pathways. CONCLUSION: Preimplantation and implantation stage human embryos could be permissive to multiple hCoVs.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Blastocyst/metabolism , Coronavirus Infections/metabolism , Embryo, Mammalian/metabolism , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Replication , Angiotensin-Converting Enzyme 2/genetics , Blastocyst/pathology , Blastocyst/virology , Coronavirus/physiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Embryo Implantation , Embryo, Mammalian/pathology , Embryo, Mammalian/virology , Endosomal Sorting Complexes Required for Transport , Humans , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics
11.
J Assist Reprod Genet ; 38(6): 1449-1457, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1126571

ABSTRACT

PURPOSE: We aimed to assess whether home collection and increased time to semen processing are associated with altered sperm parameters, fertilization rates (FR), day 5 usable quality blastocyst development rates (D5-UQBR), or pregnancy rates (PR) in patients undergoing IVF/ICSI. METHODS: This was a retrospective cohort study of patients undergoing IVF/ICSI before the coronavirus disease 2019 (COVID-19) pandemic ("clinic" collection, n = 119) and after COVID-19 ("home" collection, n = 125) at an academic fertility practice. Home collection occurred within 2 h of semen processing. Patient sperm parameters, FR (#2PN/MII), D5-UQBR (# transferable and freezable quality blastocysts/# 2PN), and PR in fresh transfer cycles were compared between clinic and home groups with t-tests. The association between time to processing on outcomes was assessed with regression modeling, controlling for potential confounders. RESULTS: Mean male age was 37.9 years in the clinic group and 37.2 years in the home group (p = 0.380). On average, men were abstinent for 3.0 days (SD 1.7) in the clinic group and 4.1 days (SD 5.4) in the home group (p = 0.028). Mean time to semen processing was 35.7 min (SD 9.4) in the clinic group and 82.6 min (SD 33.8) in the home group (p < 0.001). There was no association between collection location and increased time to processing on sperm motility, total motile count, FR, D5-UQBR, or PR. CONCLUSIONS: Our data suggest that increased time to processing up to 2 h with home semen collection does not negatively impact sperm parameters or early IVF/ICSI outcomes.


Subject(s)
Blastocyst/cytology , Fertilization , Pregnancy Rate , Semen Preservation/methods , Semen , Spermatozoa/physiology , Adult , Ambulatory Care , COVID-19 , Embryo Transfer , Female , Fertilization in Vitro , Humans , Male , Outcome Assessment, Health Care , Pregnancy , Retrospective Studies , Semen Analysis , Sperm Injections, Intracytoplasmic , Sperm Motility , Time Factors
12.
Mol Reprod Dev ; 88(3): 211-216, 2021 03.
Article in English | MEDLINE | ID: covidwho-1098909

ABSTRACT

An outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is leading to an unprecedented worldwide health crisis. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2. Our objectives are to analysis the expression profile of ACE2 and TMPRSS2 in human spermatogenic cells, follicle cells, and preimplantation embryos, thereby providing mechanistic insights into viral entry and viral impact on reproduction. We found that ACE2 is mainly expressed during gametogenesis in spermatogonia and oocytes of antral follicles, granulosa cells of antral follicles and pre-ovulatory follicles, while TMPRSS2 almost has no expression in spermatogenic cells, oocytes or granulosa cells. In preimplantation embryos, ACE2 is expressed in early embryos before eight-cell stage, and trophectoderm of late blastocysts, while TMPRSS2 initiates its robust expression in late blastocyst stage. ACE2 and TMPRSS2 only show significant co-expression in trophectoderm of late blastocysts in all above cell types. We speculate that trophectoderm of late blastocysts is susceptible to SARS-CoV-2, and that the chance of SARS-CoV-2 being passed on to offspring through gametes is very low. Therefore, we propose that fertility preservation for COVID-19 patients is relatively safe and rational. We also recommend embryo cryopreservation and embryo transfer into healthy recipient mother at cleavage stage instead of blastocyst stage. Moreover, we unexpectedly found that co-expression pattern of ACE2 and TMPRSS2 in oocytes and preimplantation embryos in human, rhesus monkey and mouse are totally different, so animal models have significant limitations for evaluating transmission risk of SARS-CoV-2 in reproduction.


Subject(s)
Angiotensin-Converting Enzyme 2/biosynthesis , Blastocyst/metabolism , Granulosa Cells/metabolism , Oocytes/metabolism , Serine Endopeptidases/biosynthesis , Spermatogonia/metabolism , Animals , COVID-19/pathology , Databases, Genetic , Embryo Transfer/methods , Female , Fertility Preservation/methods , Gene Expression Profiling , Humans , Macaca mulatta , Male , Mice , Reproductive Techniques, Assisted , SARS-CoV-2/growth & development , Transcriptome/genetics , Virus Internalization
13.
BMJ Open ; 11(1): e042395, 2021 01 13.
Article in English | MEDLINE | ID: covidwho-1028310

ABSTRACT

INTRODUCTION: In vitro fertilisation (IVF) has evolved as an intervention of choice to help couples with infertility to conceive. In the last decade, a strategy change in the day of embryo transfer has been developed. Many IVF centres choose nowadays to transfer at later stages of embryo development, for example, transferring embryos at blastocyst stage instead of cleavage stage. However, it still is not known which embryo transfer policy in IVF is more efficient in terms of cumulative live birth rate (cLBR), following a fresh and the subsequent frozen-thawed transfers after one oocyte retrieval. Furthermore, studies reporting on obstetric and neonatal outcomes from both transfer policies are limited. METHODS AND ANALYSIS: We have set up a multicentre randomised superiority trial in the Netherlands, named the Three or Fivetrial. We plan to include 1200 women with an indication for IVF with at least four embryos available on day 2 after the oocyte retrieval. Women are randomly allocated to either (1) control group: embryo transfer on day 3 and cryopreservation of supernumerary good-quality embryos on day 3 or 4, or (2) intervention group: embryo transfer on day 5 and cryopreservation of supernumerary good-quality embryos on day 5 or 6. The primary outcome is the cLBR per oocyte retrieval. Secondary outcomes include LBR following fresh transfer, multiple pregnancy rate and time until pregnancy leading a live birth. We will also assess the obstetric and neonatal outcomes, costs and patients' treatment burden. ETHICS AND DISSEMINATION: The study protocol has been approved by the Central Committee on Research involving Human Subjects in the Netherlands in June 2018 (CCMO NL 64060.000.18). The results of this trial will be submitted for publication in international peer-reviewed and in open access journals. TRIAL REGISTRATION NUMBER: Netherlands Trial Register (NL 6857).


Subject(s)
Birth Rate , Embryo Transfer , Blastocyst , Female , Fertilization in Vitro , Humans , Infant, Newborn , Live Birth , Multicenter Studies as Topic , Netherlands , Pregnancy , Pregnancy Rate , Randomized Controlled Trials as Topic
14.
J Assist Reprod Genet ; 37(10): 2393-2398, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-692491

ABSTRACT

Examine good tissue practices as relates to in vitro fertilization, biopsying, and vitrificationto compare current knowledge of ova, sperm, and embryos as vectors for disease transmission as it relates to our current knowledge regarding the SARS-CoV-2 virus.Unknown risks relating to the SARS-CoV-2 virus and sperm, ova, and embryos necessitate a reexamining of how human IVF is performed. Over the last decade, improvements in cryosurvival and live birth outcomes have been associated with zona pellucida breaching procedures (e.g., blastocyst collapsing and biopsying). In turn, today embryos are generally no longer protected by an intact zona pellucida when vitrified and in cryostorage. Additionally, high security storage containers have proven to be resilient to potential cross-contamination and reliable for routine human sperm freezing and embryo vitrification.Several options to current IVF practices are presented that can effectively mitigate the risks of cross-contamination and infection due to the current Covid-19 pandemic or other viral exposures. The question remains; is heightened security and change warranted where the risks of disease transmission likely remain negligible?


Subject(s)
Coronavirus Infections/virology , Fertilization in Vitro , Oocytes/growth & development , Pandemics , Pneumonia, Viral/virology , Betacoronavirus/pathogenicity , Blastocyst/virology , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/epidemiology , Cryopreservation , Embryo Culture Techniques/methods , Embryo Transfer/methods , Embryo, Mammalian/virology , Female , Humans , Live Birth/epidemiology , Oocytes/virology , Pneumonia, Viral/complications , Pneumonia, Viral/epidemiology , Pregnancy , Pregnancy Complications, Infectious/virology , Pregnancy Rate , SARS-CoV-2 , Vitrification , Zona Pellucida
SELECTION OF CITATIONS
SEARCH DETAIL